25
Feb
2010

The Nature and Importance of Source Code and L.earning
Programming with Python

Last year a client asked us for advice on getting started with programming. So I thought I’d share
some thoughts about programming, its relationship with FOSS (Free and Open Source Software)
management and why Python is a good language for learning programming including some great
on-line resources. But first I want to make sure our business-oriented readers understand the nature
and importance of source code.

The “source” aka “the code” provides a language in which computer users can create or change
software. One does not have to be a programmer to work on the code. In fact, every computer user
is, ipso facto, a programmer! Menus, web interfaces, and graphical user interfaces (GUIs) are some
of the more facile “languages™ for computer programming that everyone, even children, can readily
learn and use. Of course, building complex software systems requires a more expressive
specification language than a web form, for instance, can provide.

Although all computer software is specified with source code, FOSS systems are unique in that the
source code is made available with the software. In contradistinction, software lock-in or vendor
lock-in describes the unfortunately all too common practice of many organizations to block access
to their source code.

Having access to the source code provides huge operational benefits. For one, the source can be
used to understand how the software works: it is a form of software documentation (indeed, it is the
most definitive form of software documentation possible!). Also, code can be easily changed to add
diagnostics or to test a possible solution to a problem or to modify or add functionality. In addition,
the source is a language both for specifying features to the computer and for discussing computing
with others. So most mature FOSS languages have vibrant support communities in which one can
participate, learn and get help.

The source is a tool: a powerful, multi-purpose, critically important tool.

Since LinuxForce focuses on FOSS, we are able to take full advantage of the availability of the
code. We are always working with the source! Since most of our work is systems administration, we
usually “program” configuration files. However, we also write systems software and scripts and we
support software developers extensively, so we have a persistent, deep, and productive relationship
with code.

But what to suggest to someone like our customer who wants to learn programming?

I remembered seeing a blurb in Linux Journal referencing an article they published in May 2000 by
Eric Raymond entitled "Why Python" which argues persuasively for the virtues of the programming
language Python. I had often felt that Perl‘s idiosyncrasies made it difficult to use, so Eric’s critique
of Perl and accolades for Python were convincing to me. In addition, I follow FOSS mathematics
software and I was aware that Sage is a Python “glue” to more than fifty FOSS math libraries. I’ve
been meaning to look into Python so I could use Sage. Another pull comes from my work at


https://blog.linuxforce.net/2010/02/25/the-nature-and-importance-of-source-code-and-learning-programming-with-python/
https://blog.linuxforce.net/2010/02/25/the-nature-and-importance-of-source-code-and-learning-programming-with-python/
http://en.wikipedia.org/wiki/Software_library
http://sagemath.org/
http://en.wikipedia.org/wiki/Python_(programming_language)
http://www.python.org/
http://www.linuxjournal.com/article/3882
http://catb.org/~esr/
http://www.linuxjournal.com/
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Script_(computing)
http://en.wikipedia.org/wiki/Systems_software
http://en.wikipedia.org/wiki/Configuration_file
http://en.wikipedia.org/wiki/Systems_administrator
http://www.LinuxForce.net/
http://en.wikipedia.org/wiki/Technical_support
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Feature_(software_design)
http://en.wikipedia.org/wiki/Vendor_lock-in
http://en.wikipedia.org/wiki/Vendor_lock-in
http://en.wikipedia.org/wiki/Web_form
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Menu_(computing)
http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Computer_programming

LinuxForce where we use a lot of Python-based software including mailman, fail2ban, Plone, and
several tools used for virtual machine management such as kvm, virtinst and xen-tools. Python has
a huge software repository and community. So one is likely to find good libraries to build upon
(thus avoiding the extra learning curve of building everything from scratch). Python is an
interpreted language which makes it easier to debug and use so the learning process is smoother.

To finish the recommendation, I just needed to find some on-line resources. First, Kirby Urner
suggested these two: Wikieducator’s Python Tutorials and "Mathematics for the Digital Age and
Programming in Python". Then, I checked out the Massachusetts Institute of Technology’s (MIT)
OpenCourseWare which provides extensive course materials for many of their classes (I’ve already
watched the full video set for a couple of MIT’s courses including the legendary Walter Lewin’s
"Classical Mechanics" and have been very impressed by the quality and content of their materials).
After nearly 30 years of introducing students to programming with Scheme, MIT switched to
Python in 2008! The materials for their introductory Python-based course "6.00 Introduction to
Computer Science and Programming" are very thorough, accessible and helpful. Their free on-line
materials include the full video lectures of the class plus assignments, sample test problems, class
handouts, and an excellent Readings section with references to "the Python Tutorial" and a very

good free on-line textbook "How to Think Like a Computer Scientist: Learning with Python".

In conclusion, if you or anyone you know wants to learn how to program computers, I recommend
starting with Python using MIT’s on-line course materials supplemented with the other on-line
resources mentioned above (and summarized in the table below). I’ve now watched more than half
of the videos from the MIT 6.00 course and I’ve worked through several of their assignments: this
is a great course! Even with nearly three decades experience programming including a couple of
college-level courses in the 1980s, I’'m finding the class is more than just good review for me: I've
learned a few new things (in particular, dynamic programming and the knapsack problem). Python’s
clean syntax and elegant design will help as one delves into writing code for the first time. Its
extensive libraries and repositories will support the application of one’s newly acquired computing
skills to solve problems in the area of the student’s special interests whatever they may be ... and
that’s the way we learn best: by doing something that we personally care about!

Summary of On-Line Resources for Learning Python

* Python Programming .anguage — Official Website

* Wikipedia article on Python

* MIT’s Course 6.00 Introduction to Computer Science and Programming including complete
video lectures about learning Python and programming.

* The free textbook How to Think Like a Computer Scientist: Learning with Python

e The Python Tutorial

* Python Library Reference

* The Python Community

» PyPI: The Python Package Index (a repository of software for Python)

* Wikieducator’s Python Tutorials

* Mathematics for the Digital Age and Programming in Python

* Eric Raymond’s May 2000 Linux Journal article "Why Python"

Posted by CJ Fearnley in Programming, 0 comments


http://www.linuxjournal.com/article/3882
http://www.skylit.com/mathandpython.html
http://www.wikieducator.org/PYTHON_TUTORIALS
http://pypi.python.org/pypi
http://python.org/community/
http://www.python.org/doc/lib/lib.html
http://docs.python.org/tutorial/index.html
http://www.greenteapress.com/thinkpython/thinkCSpy/thinkCSpy.pdf
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-00Fall-2008/CourseHome/index.htm
http://en.wikipedia.org/wiki/Python_(programming_language)
http://www.python.org/
http://en.wikipedia.org/wiki/Syntax_(programming_languages)
http://en.wikipedia.org/wiki/Knapsack_problem
http://en.wikipedia.org/wiki/Dynamic_programming
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-00Fall-2008/CourseHome/index.htm
http://www.greenteapress.com/thinkpython/thinkCSpy/thinkCSpy.pdf
http://en.wikipedia.org/wiki/GNU_Free_Documentation_License
http://docs.python.org/tutorial/index.html
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-00Fall-2008/Readings/index.htm
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-00Fall-2008/CourseHome/index.htm
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-00Fall-2008/CourseHome/index.htm
http://en.wikipedia.org/wiki/Scheme_(programming_language)
http://ocw.mit.edu/OcwWeb/Physics/8-01Physics-IFall1999/CourseHome/index.htm
http://en.wikipedia.org/wiki/Walter_Lewin
http://ocw.mit.edu/
http://www.mit.edu/
http://www.skylit.com/mathandpython.html
http://www.skylit.com/mathandpython.html
http://www.wikieducator.org/PYTHON_TUTORIALS
http://www.grunch.net/4dsolutions/kirby.html
http://en.wikipedia.org/wiki/Interpreted_language
http://www.python.org/doc/lib/lib.html
http://python.org/community/
http://pypi.python.org/pypi
http://packages.debian.org/search?keywords=xen-utils-3
http://virt-manager.et.redhat.com/
http://kvm.qumranet.com/
http://en.wikipedia.org/wiki/Virtual_machine
http://plone.org/
http://www.fail2ban.org/
http://www.list.org/

	The Nature and Importance of Source Code and Learning Programming with Python

