
16 
Oct 
2009 

Customization, Upgradeability and Eternally Regenerative 
Software Administration
Mary Hayes Weier wrote an interesting article in this week’s edition of InformationWeek on 
"Alternative IT: CIOs are more receptive than ever to new software models". What is great about 
her article is how she captured the divergent views on IT models (such as SaaS, cloud computing, 
etc.) and gave nice vignettes of different organizations trying different parts of various models. I 
especially valued her use of cognitive dissonance to leave the reader thinking … better informed but 
without a firm conclusion.

There are so many parts of the article that I could blog about, but the one that touched the core of 
my thinking about “eternally regenerative software administration” was the quote by Bill Louv, 
CIO at GlaxoSmithKline, who said

"And here’s the rub: When you customize software, it’s difficult to implement future 
upgrades from the vendor"

Louv touched the very bane of eternally regenerative software administration! Software should 
accommodate both customization and upgradeability: these two elements of software administration 
are at the heart of my notion of eternally regenerative software administration: how to preserve 
customizations and provide smooth (near zero downtime with almost no glitches) upgrades through 
major release after major release. It is a big challenge, but in our experience the Free and Open 
Source Software (FOSS) communities are at the leading edge in finding solutions to these 
conflicting objectives. Here are some of the innovative ideas from the FOSS world which should 
serve as models or design patterns for all software developers (if only these ideas would become 
commonplace!).

First, Debian (a FOSS operating system which is the root of Ubuntu, Knoppix, Xandros and many 
other Linux distributions) requires that their official packages, a collection of software prepared for 
easy administration, must adhere to a very mature policy. Debian’s policy is a marvel in the FOSS 
world and to a very large degree is responsible for its strong support for both customization and 
upgradeability. I think Debian’s reputation for stability and maintainability is almost certainly due to 
their decision to develop a consensus-driven policy that its software must implement.

For example, the Debian package maintainer, Luigi Gangitano, for Drupal, a FOSS content 
management platform, did a great job making the software both customizable and maintainable. 
The package supports configuration of multiple virtual hosts which can all be upgraded at once! 
And the Debian drupal6 package stores the look-n-feel in /etc/drupal/6/themes/ so that 

each site’s GUI can be customized without interfering with upgrades. If only all web applications 
were built to be as maintainable as Debian’s Drupal package!

Another example is the overlay support included in RT: Request Tracker, a FOSS ticket tracking 
system. This allows putting replacement subroutines in special files in /usr/local/share/ 

which overlay or substitute the upstream code. This approach is more likely to break on upgrades, 

https://blog.linuxforce.net/2009/10/16/customization-upgradeability-and-eternally-regenerative-software-administration/
https://blog.linuxforce.net/2009/10/16/customization-upgradeability-and-eternally-regenerative-software-administration/
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Ticket_tracking
http://bestpractical.com/rt
http://packages.debian.org/search?keywords=drupal6
http://en.wikipedia.org/wiki/Virtual_host
http://drupal.org/
http://qa.debian.org/developer.php?login=luigi@debian.org
http://www.debian.org/doc/devel-manuals#policy
http://en.wikipedia.org/wiki/Debian_package
http://en.wikipedia.org/wiki/Linux_distribution
http://www.Xandros.com/
http://www.Knoppix.net/
http://www.Ubunutu.com/
http://www.debian.org/
http://en.wikipedia.org/wiki/Design_pattern
http://www.gsk.com/
http://www.gsk.com/about/bio-louv.htm
http://en.wikipedia.org/wiki/Cognitive_dissonance
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/SaaS
http://www.informationweek.com/news/software/open_source/showArticle.jhtml?articleID=220400026
http://www.InformationWeek.com/
http://www.informationweek.com/authors/showAuthor.jhtml?authorID=1106


but it supports minimal changes to the business logic with a decent chance that upgrades will be 
smooth.

There are countless more examples from the FOSS world of innovative solutions to inter-
accommodate customization and upgrades in support of eternally regenerative software 
administration. What are some of your favorite examples?

Posted by CJ Fearnley in Debian, Eternally Regenerative Software Administration, 1 comment 


	Customization, Upgradeability and Eternally Regenerative Software Administration

